Work out the value of x.
Give your answer correct to 1 decimal place.

$\text{(Total for Question 16 is 3 marks)}$

17 $ABCD$ is a parallelogram.

$\overrightarrow{BC} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$ $\overrightarrow{DC} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$

Find \overrightarrow{BD} as a column vector.

$\text{(Total for Question 17 is 2 marks)}$
(c) Use the graph to find estimates for the solutions of the equation \(x + \frac{9}{x} = 7 \)

(Total for Question 16 is 6 marks)

17. \(f(x) = \frac{3}{x + 1} + \frac{1}{x - 2} \)

(a) State one value of \(x \) which cannot be included in any domain of \(f \).

(b) Find the value of \(f(0) \)

(c) Find the value of \(x \) for which \(f(x) = 0 \)
 Show clear algebraic working.

\[x = \]

(Total for Question 17 is 5 marks)
19 (a) Show that \((5 - \sqrt{8})(7 + \sqrt{2}) = 31 - 9\sqrt{2}\)

Show each stage of your working.

\[\text{Given that } c \text{ is a prime number,} \]

(b) rationalise the denominator of \(\frac{3c - \sqrt{c}}{\sqrt{c}}\)

Simplify your answer.

(Total for Question 19 is 5 marks)
21 \(y = x^3 + 6x^2 + 5 \)

(a) Find \(\frac{dy}{dx} \)

\[\frac{dy}{dx} = \] \hspace{1cm} (2)

The curve with equation \(y = x^3 + 6x^2 + 5 \) has two turning points.

(b) Work out the coordinates of these two turning points.
Show your working clearly.

(Total for Question 21 is 6 marks)
22 A, r and T are three variables.

A is proportional to T^2
A is also proportional to r^3

$T = 47$ when $r = 0.25$

Find r when $T = 365$
Give your answer correct to 3 significant figures.

(Total for Question 22 is 4 marks)